Controllable Schottky Barriers between MoS2 and Permalloy

نویسندگان

  • Weiyi Wang
  • Yanwen Liu
  • Lei Tang
  • Yibo Jin
  • Tongtong Zhao
  • Faxian Xiu
چکیده

MoS2 is a layered two-dimensional material with strong spin-orbit coupling and long spin lifetime, which is promising for electronic and spintronic applications. However, because of its large band gap and small electron affinity, a considerable Schottky barrier exists between MoS2 and contact metal, hindering the further study of spin transport and spin injection in MoS2. Although substantial progress has been made in improving device performance, the existence of metal-semiconductor Schottky barrier has not yet been fully understood. Here, we investigate permalloy (Py) contacts to both multilayer and monolayer MoS2. Ohmic contact is developed between multilayer MoS2 and Py electrodes with a negative Schottky barrier, which yields a high field-effect mobility exceeding 55 cm(2)V(-1)s(-1) at low temperature. Further, by applying back gate voltage and inserting different thickness of Al2O3 layer between the metal and monolayer MoS2, we have achieved a good tunability of the Schottky barrier height (down to zero). These results are important in improving the performance of MoS2 transistor devices; and it may pave the way to realize spin transport and spin injection in MoS2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts

Surface potential measurement on atomically thin MoS2 flakes revealed the thickness dependence in Schottky barriers formed between high work function metal electrodes and MoS2 thin flakes. Schottky diode devices using mono- and multi-layer MoS2 channels were demonstrated by employing Ti and Pt contacts to form ohmic and Schottky junctions respectively. Characterization results indicated n-type ...

متن کامل

Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers.

In this article, we study the properties of metal contacts to single-layer molybdenum disulfide (MoS2) crystals, revealing the nature of switching mechanism in MoS2 transistors. On investigating transistor behavior as contact length changes, we find that the contact resistivity for metal/MoS2 junctions is defined by contact area instead of contact width. The minimum gate dependent transfer leng...

متن کامل

Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence o...

متن کامل

The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces.

Density functional theory calculations are performed to unravel the nature of the contact between metal electrodes and monolayer MoS2. Schottky barriers are shown to be present for a variety of metals with the work functions spanning over 4.2-6.1 eV. Except for the p-type Schottky contact with platinum, the Fermi levels in all of the studied metal-MoS2 complexes are situated above the midgap of...

متن کامل

Spatially resolved photoexcited charge-carrier dynamics in phase-engineered monolayer MoS2.

A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition-metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. Here, we investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photoexcitation using correlated scanning photocurrent micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014